时政·财经·军事 | 生活·家庭·娱乐 | 体坛·历史·科技 | 摄影·旅游·文化 | 移民·教育·就业 | 数码·健康·奇闻 | 社区·评论·问卷
留园网首页 · 新闻速递首页 · 【繁體閱讀】 【网友评论:57 条】 【 热评新闻排行 】 【 热门新闻排行 】 【 即刻热度新闻排行 】 【 72小时神评妙论 】   

美国超导技术大突破?中国学界不服:此人已放3次大炮

新闻来源: 澎湃新闻/ 中科院物理所/新智元 于2023-03-09 9:33:18  提示:新闻观点不代表本网立场

上海高温超导重点实验室主任:迪亚斯的“室温超导”距实际应用非常远

蔡传兵指出,1GPa仍然属于高压的范畴,暂时没有大众期待的那么实用。另外,他的报告题目采用了“近常压”这个具有歧义的说法。1GPa跟原来相比确实是更接近常压了,但距离真正的常压还有距离。

·这次迪亚斯采用了一个新的元素组合,引入了稀土金属——镥元素。蔡传兵介绍,镥元素非常少见,一般实验室里是没有的,因此几乎没有先前的尝试,这次具有成分创新和成功的可能性。

在3月7日的美国物理学春季年会上,纽约罗切斯特大学物理学家朗加·迪亚斯(Ranga Dias)举行讲座,称自己的团队创造出了可在室温下工作的超导材料。不过,迪亚斯团队此前的室温超导材料论文曾被《自然》杂志撤稿,这也让迪亚斯的研究成果一直伴随着巨大争议。

迪亚斯这次发布的室温超导材料据称可以在相对较低的压力下工作。他介绍,团队发现了一种由氢、氮、镥组成的化合物,在294K(即21°C)的温度下,材料电阻能降为0,不过这仍需要1GPa的压力才能实现材料的超导性能,这约是大气压力的10000倍,已经远低于室温超导先前所需的数百万个大气压。

对此,上海市高温超导重点实验室主任、上海大学教授蔡传兵认为,这次迪亚斯展示出的研究成果“有一定的可靠性”,但室温超导所需的1GPa压力仍属于高压范畴,距离实际应用仍非常遥远。

“有一定的可靠性”,“近常压”说法有歧义

超导指的是在特定条件下呈现出电阻等于零的特性以及具备完全抗磁性的材料,但这个“特定条件”的要求往往十分严苛,要么需要极低温度,要么需要极高压力。目前较为先进的高温超导材料的临界温度为-196°C,而如果要在室温状态下实现超导,需要的往往是足以把绝大多数物质碾碎的超高压力,因此室温超导至今仍然无法实际应用。

蔡传兵向澎湃科技(www.thepaper.cn)表示,这次迪亚斯所展示出的研究成果“有一定的可靠性”,“假设它的数据是正确的,等更多科学家跟进它的研究结果后,有可能会出现这个领域的重大突破。”

蔡传兵介绍,迪亚斯这次的研究成果有两个亮点,第一是把原来所需的极端高压267GPa变成了一个相对低的压力1GPa。但蔡传兵也指出,1GPa仍然属于高压的范畴,暂时没有大众期待的那么实用。另外,他的报告题目采用了“近常压”这个具有歧义的说法,也是有些夸张。1GPa跟原来相比确实是更接近常压了,但距离真正的常压还有距离。

第二个亮点是,这次迪亚斯采用了一个新的元素组合,引入了稀土金属——镥元素(Lu,Lutetium),合成了三元氢化物(N-Lu-H),和他以前采用的碳硫氢化物不同。蔡传兵介绍,镥元素非常少见,一般实验室里是没有的,因此几乎没有先前的尝试,这次具有成分创新和成功的可能性。

谈到迪亚斯此次展示的研究成果,蔡传兵介绍,一般超导体要测2-3个重要参数,第一是电阻随温度的变化,第二是磁化率随温度的变化,还有一个是MH曲线(磁化曲线)。除此之外,迪亚斯这次又增加了一个图,即比热对温度的变化,“这也是跨越性的,” 蔡传兵向澎湃科技表示,“他展示的图片可以反映温度变化的规律,虽然具体数据还没公开,但从他发布的内容上看是专业的,绘成的图我看是比较靠谱的。”

争议不断的科学家



在哈佛大学时的朗加·迪亚斯(左)和导师伊萨克·西维拉。

2017年,当时在哈佛大学的迪亚斯和他的导师伊萨克·西维拉(Isaac Silvera)在《科学》杂志上发表的一篇同行评议论文中声称发现了金属氢。据英国物理学会《物理世界》报道,他们把金刚石压砧里的氢压缩到接近500万个大气压的压力下,通过光学显微镜观察,氢样品有了金属光泽。由于手头没有更好的设备,他们用iPhone拍下了样品照片。后来,一些专家质疑实验的真实性,并提出迪亚斯和他导师的这个实验未能重复实现。但迪亚斯和西维拉声称他们重复了之前的实验,并观察到了同样的结果,“但由于技术原因,我们无法测量压力,所以我们没有发表。”西维拉说。

2020年10月,《自然》杂志报道了迪亚斯联合内华达大学等团队在室温超导领域的突破,实现了15℃温度下的碳氢硫化物超导。这种新型室温超导体要在267GPa的压力下工作。但2022年9月《自然》杂志撤回上述论文,称研究人员在数据处理方面存在违规行为。撤稿声明显示,该研究关键数据处理、分析的有效性受到怀疑,尽管作者坚持认为原始数据能够支持论文的主要结论,但过去两年中其他科学家对研究数据的频繁质疑无疑削弱了论文可信度。

H指数(H-index)的发明者、美国加州大学圣地亚哥分校理论物理学家乔治·赫希(Jorge Hirsch)对迪亚斯的抨击最为引人关注。赫希提出了强烈的指控,称迪亚斯和内华达大学拉斯维加斯分校的物理学者阿什坎·萨拉马特(Ashkan Salamat)发表的一些数据可能存在欺骗行为。赫希还指出,迪亚斯论文中的数据与2009年Physical Review Letters发表的一篇关于高压下铕超导性论文中的数据有可疑的相似之处。该研究由于磁化率数据不准确,2021年已被撤回。

对此,蔡传兵则表示出了对科研探索精神的包容。蔡传兵向澎湃科技表示,“从现场参会的同仁反应来看,作为亚裔科学家迪亚斯有一股‘意气’在身上,他的文章先前被撤稿,大家都对他有所怀疑,但他仍然一直坚持研究,并在有国际影响力的美国物理学春季年会上发表自己的成果。之所以有争议,一种可能是他的实验很难,他自己也不知道错在哪里。还有一种可能,大家无法重复他的实验,是因为他有自己的独门秘籍,没有公开告诉别人。”

中科院物理所:21℃的室温超导真的要来了?让子弹再飞一会儿

人要问了,超导是个啥,发现个室温超导为啥这么激动?

01

超导及其应用价值

超导态是材料的一种特殊状态,在超导态中,材料处于零电阻的状态中,初中二年级的物理告诉我们,电阻是材料普遍具有的性质,当电流流经材料时,其内部的晶格、杂质等会对载流子运动产生阻碍,载流子本身携带的能量会被转移到晶格上,宏观上造成焦耳热,电势也会相应下降。

而没有电阻的超导体就完全没有上述问题,电流流经超导体,既不会发热,也不会出现压降,因此电流可以无衰减地在超导体中流动。

很明显,超导体的意义是显而易见的,如果我们的电线都采用超导体,那就不会存在能量衰减。我们现阶段使用的特高压输电技术,其实就是提高输电线的电压,来尽可能降低能量损耗,可如果使用了超导电线,将完全不存在这个问题,将彻底改写整个行业,我们可以直接以市电电压传输电力,完全不需要变电站,我们或许可以直接使用直流电。

我们的特高压输电线,超导出来可能就要改变了 | 图源自网络

但是,由于超导Tc(超导转变温度,指超导体由正常态进入超导态的温度)的限制,这一设想完全无法实现,我们现在发现的绝大部分超导体Tc都在77K(-196℃)以下,这是液氮的沸点,Tc在这之下的超导体大部分时候是使用更加昂贵的液氦制冷来使其进入超导态,只有少部分铜基超导体Tc达到了77K之上,可以使用液氮制冷来使其进入超导态。

即便如此,超导体在我们日常生活中已经有了应用,医院的核磁共振便采用了超导体,这就涉及了超导体的另一重大应用方向,即产生大磁场。

就这玩意,里面有个超导体 | 图源自网络

当我们需要一个很大的磁场时,我们首先想到的是什么?磁铁?不不不,永磁体的磁场远远达不到我们的要求,再回想一下初中二年级的物理知识,没错,通电螺线管!!利用电流,我们也可以得到磁场,更令人振奋的是,磁感应强度与电流强度成正比,也就是说,电流越大,磁场越强。

但大电流就会遇到上文提到的两个问题,焦耳热与压降,大电流会产热,更令人绝望的是焦耳热与电流的平方成正比,因此,电流每增加一分,磁场就会相应增强一分,但产热会按平方增加,最终绝大多数能量都将转化为内能。

目前发现的高温超导体 | 图源自wiki

焦耳热的来源是电阻,只要没有电阻,就可以完全不考虑焦耳热的影响,因此超导体在这里的意义就显而易见了,我们如果利用超导体线材制作线圈,就可以几乎无节制(磁场也可以抑制超导态,这里需要注意产生的磁场不能超过超导体的临界磁场)地提升线圈内的电流强度,进而获得强大的磁场。这就是核磁共振中强大磁性的来源。

除了以上场景,利用两个不同超导体做成的约瑟夫森结也有重要应用价值,我们可以利用它制作SQUID,这个装置是目前最精确的磁场探测装置,在超导量子计算机中也有重要应用。

看到这里,你应该对室温超导的意义有一定认知了,如果我们真的可以发现常压下的室温超导,那将使整个人类社会产生重大改变,我们现有的科技可能面临颠覆,能源问题得到重大缓解,对整个人类都具有重大进步意义。

我们还是简单介绍一下超导体的发现历程及其输运性质,这有利于我们理解Dias的工作。

02

超导的发现及其机理

1911年,昂内斯改进了制冷设备,率先将温度降至液氦沸点之下,在此期间,他发现汞的电阻在4.2K时突然降为零,经过再三确认,他最终确定,这不是实验上的失误或误差,这是汞本征的性质,由此,他打开了超导的大门,汞也是我们发现的第一个超导体,Tc为4.2K。

实际上很多材料都具有超导电性 | 图源自wiki

昂内斯仅仅测量的汞的电阻,这揭示了超导体在电输运上的特征,也就是零电阻。

昂内斯(右一) | 图源自Wiki

后来,1933年,迈斯纳在对进入超导态的锡或铅金属球做磁场分布测量时发现,当材料进入超导态后,其内部的磁场会迅速被排出体外,磁场只在超导体外部存在,超导体展现出完全抗磁性,这就是迈斯纳效应。

后来的研究发现,超导体可以进一步划分为第一类超导体和第二类超导体,第一类超导体展现出完全的抗磁效应,内部完全没有磁场。而第二类超导体则允许磁场在超导体内部产生磁通量子,也就是允许磁场部分地进入超导体。

以上对超导体的研究更多地还停留在对其性质探究,我们实际上也一直在寻找超导的内在机理,探索其本质。

最开始的尝试是伦敦方程,不过这个理论无法揭示穿透深度与外磁场的关系。1950年左右,前苏联科学家金兹堡和朗道提出了解释超导的唯象理论——金兹堡-朗道理论(G-L理论)。该理论建立在朗道二级相变理论的基础上,用序参量描述超导体。该理论成功解释了超导体,上文提到的第一类超导体与第二类超导体就是根据G-L方程求解的界面能的正负判定的。

根据G-L理论,超导体从正常态到超导态的转变是一个二级相变,因此,理论上我们可以在比热的测量中发现其在Tc处有一个跃变,或者叫一个峰。后来这也在实验上被证实。

理想超导体的电与比热性质 | 图源自wiki

看到这里,你应该也发现了,超导的文章特别好写,测一下电阻,测一下磁化率,如果可以的话,再测一下比热,比热即便测不了也不是什么大事,搞完这些就齐活了。

最后还要简单提一下,我们目前解释超导的最好的理论就是BCS理论,这个理论的核心就是电子在与晶格的耦合中会出现电子吸引电子的可能,这样两个电子会结成库珀对,结成库珀对的电子可以看作玻色子,在低温下,发生“凝聚”,能量可以无耗散地在凝聚的库珀对中流动,实现超导态。

但BCS理论也不能解释所有超导态,我们根据BCS理论计算得到麦克米兰极限,即符合BCS理论的超导体Tc不会超过40K,但实际上很多超导体都突破了这一极限,比如铜基超导和铁基超导,这样的超导体被称为高温超导体,也就是说相对于之前20 K以下的超导体,Tc高了很多。

本来还想介绍一下实验中高压的获取,篇幅所限,有机会再聊。之前有一篇文章也讲解了实验室中的高压技术,感兴趣的可以点击这里看一下。

03

新的室温超导

有了上面这些预备知识,我们就可以一起来看一下这篇已经被发表在nature上的文章了。



看到Dias的名字了吗?最后一个

同大部分超导的文章一样,Dias研究团队对样品电输运、磁化率及比热进行了测量。

首先是电阻的测量结果,左图中给出了10、16、20kbar(1、1.6、2.0GPa)下的电阻测量结果,三个电压下电阻都降低到了0,这正是超导体的主要特征之一,需要注意的是,这里1GPa时Tc是最高的,压强越低,Tc越高,是一个令人意外的结果。插图是样品及电极图片。右图则给出了超导态与正常态的V-I曲线。

这张图是对磁化率的测量,a图是60Oe(Oe是高斯单位制中表示磁场强弱的单位,可以理解为高斯,即1T=10000Oe)下8kbar(0.8GPa)的磁矩随温度的变化图,可以明显看到其Tc为277K(4℃),b图给出磁矩与外磁场的关系,也符合超导体的特征,c图则是不同压力下的M-T曲线,这里的Tc与电阻上的保持一致,转变温度区间也很小,是非常好的转变。不过在a图中也可以看出来研究团队对原始数据做了一定处理。

这里多提一句,磁化率的测量会明显受样品形状、背底等因素的测量,理论上超导体应该表现出完全抗磁性(即4πχ=-1),但实际测量中测不到完全抗磁性(即4πχ>-1)也是可以理解的。当然Dias的文章中并没有约化,a图中纵轴是磁矩,并非磁化率。

Dias还对比热进行了测量,结果如上图所示,这里给出了10、10.5、20kbar的测量结果,可以看到,三个比热的曲线均能看到超导在比热上的转变,Tc与电阻的测量结果略有区别但完全可以理解,这个结果是合理的。不过该说不说,这个比热的转变并不算明显,尤其是10.5kbar的曲线,峰并不明显,10kbar的转变也尚不如20kbar明显。这三个比热的转变看起来也有些区别,尤其是10kbar和10.5kbar的数据,仅差了0.5kbar,但图像差异却很大。不过考虑是高压下测量的,或许有一些我们不知道的困难吧。

Dias还给出了样品的XRD(X射线衍射)结果,并绘制了晶胞图像,这当然也是必要的。

a图即XRD结果,他们采用了Mo靶,红线是理论计算的结果,圆圈是实际测量的结果,蓝线是二者的误差,看得出来,测量与计算的结果区别很小,样品可以说是一个纯相,Dias团队计算样品占比为92.25%,杂质为LuN1−δHε和Lu2O3。

b图则是他们绘制的晶胞图,白色原子是氢,绿色的是镥,粉红色的是氮原子,他们给出的样品化学式是LuH3−δNε,61kbar时空间群是Fm-3m和Immm,但Dias认为超导相空间群是前者。

最后是该样品的超导相图(原文这是第一张图),Tc随着压强升高而减小,这是出乎大家意料之处,后面或许也将成为研究的重点,b图是样片形貌随着压强的变化,常压下是蓝色的,随着压强升高逐渐变为粉红,最终呈现红色,样品的颜色还是非常喜庆的。

篇幅有限,支撑材料就不带大家一起看了,感兴趣的同学可以点击链接跳转nature官网查看。

Evidence of near-ambient superconductivity in a N-doped lutetium hydride | Nature

从文章来看,这项工作无疑是突破性的,相关证据也很充足,如果能重复出来,搞不好未来能发诺奖。但物理学的研究终究不是一家之言,任何科学研究都应该经得起验证,这个也不例外,这项工作势必要经过行业内各个研究组的重复,如果经过多次重复之后,确定该结果的正确性,那将是划时代的工作。我们今年诺奖预测也就有底气了

这次的工作号称是近环境下的室温超导,通过上文,大家也能看到,Tc最高处的压强为1Gpa,大约1万个大气压,虽然还是很大,但相比于之前的270万个大气压,已经小了很多了,重复的难度也小了很多,相信已经有很多研究组已经开始着手重复实验了。

不过目前很多人对这个结果持观望态度,一方面是因为重复实验结果还没出来,另一方面或许是因为Dias之前的“前科”。

其实,在这之前,Dias就已经有了两个突破性的进展。一个是金属氢,另一个就是上一个室温超导。

Dias首先宣称自己在高压下合成了金属氢,相关文章发表在science上,但其他研究组没有重复出来,而他自己后来宣称,由于保存不当,保存金属氢的装置压力泄露,最终金属氢因为压力不足汽化消失了。后来,Dias也没有再合成金属氢。由此,金属氢可以说是成为了一桩“悬案”。

上次的氢化物室温超导也是由Dias合成的,其实现的压强高达270GPa,相关结果发表在nature上,但后续多个研究组试图重复该实验未果,并由于Dias未披露原始数据,多人认为其在磁化率的数据处理中使用了错误的方法,得到了并不能算正确的结论。因此在大家的一致抗议下,最终该文章被从nature上撤稿,当然,Dias研究团队所有成员都对该撤稿行为表示抗议,不过最终没有挽回。

正是因为这两起事件,领域内许多科学家对Dias研究团队其实持不信任态度,毕竟他们的数据结果总是比别人漂亮许多。但这次Dias给出很多原始数据,可以说全面又丰富,况且这次的成果只需要1GPa的压强,重复起来相对简单,想必我们很快就可以对该成果给出一个定论了,让我们拭目以待吧。

AI炸翻物理学!21度室温超导预定诺奖?Nature撤稿教授反获OpenAI投资




  新智元报道  

编辑:编辑部【新智元导读】室温超导的物理学圣杯,被这位黑历史重重的美国科学家摘下了?不如让子弹再飞一会。

人类在21℃条件下实现室温超导了?物理圈彻底炸了!北京时间昨天下午,一颗惊雷在美国拉斯维加斯举办的物理学会上炸响——高温超导疑似实现颠覆性突破。会议上,美国罗切斯特大学物理学家Ranga Dias报告了这个室温超导研究的里程碑式突破。

假如这次Ranga Dias真的实现了室温超导,那全球的能耗问题,将从源头上解决——人类将利用电能获得巨大的力量。如果再从根上掌握了可控核聚变,我们甚至可以进行远距离的太空旅行,可以说,人类就真的要起飞了。而掌握这项技术的人,无疑将引领世界。(简直是科幻走进现实。)对此,佛罗里达大学的物理学家James Hamlin表示,如果结果是正确的,这可能是超导历史上最大、最震撼的突破。当天,科学家们疯狂涌入会场,都希望自己能亲眼见证历史。由于物理大咖含量过高,主办方不得不叫来安保拼命堵门,驱赶人群。然而呢,这位Ranga Dias却有「黑历史」的前科。一年前,他发在Nature上的C-S-H室温超导文章曾被撤稿,如今他又带着N-Lu-H的室温超导卷土重来。所以说,在实验结果能成功复现之前,目前整件事还是疑云重重。

论文地址:https://www.nature.com/articles/s41586-023-05742-0再登Nature,室温超导迎来大结局?

室温超导为何如此重磅,让全世界物理学家震惊?超导体,顾名思义就是超级能导电的体,也就是电阻为零。这样就传输电流就不会发热,电线两端不需要电压。如果超导体能实现商用,交流电就根本不需要了,变电站也可以退出历史舞台了。而通过超导体的电流很大,就可以产生很强的磁场,在核磁共振、磁悬浮等领域都有极大的应用,连可控核聚变都不需要液氮超导了。如果真的实现,物理学、材料学界都会迎来一场大地震,人类会直接开启第四次工业革命。(从去年底的ChatGPT,到今年初的室温超导,人类科技的爆发年真的来了?)

高温超导泰斗朱经武教授也出现在了会场超导是什么?荷兰莱顿大学K. Onnes等人于1911年首次发现在温度冷却到-269°C以下时,水银的电阻会变为0。他们将这种状态命名为「超导」。这是世界首次发现了超导现象,Onnes也凭此斩获了1913年诺贝尔物理学奖。在之后的一百多年研究中,科学家们发现了成千上万种超导材料,包括各种元素材料、合金材料、化合物材料和超导陶瓷。尽管目前的超导材料已经广泛应用到量子、MRI核磁成像等领域,但必须被冷却到超低温中才能实现超导态。也就是说,我们在实际应用中,还是需要依靠昂贵的低温液体来维持低温环境。随之而来的是,维持低温的成本远远超出了超导材料的成本。因此,室温超导,无需冷却的条件下实现零电阻导电,成为物理学家们的追求的目标,不断刷新最高临界温度的极限。在此次的最新研究中,Ranga Dias和他的团队在实验中研发了一种由氢(99%)、氮(1%)和纯镥制成的材料LNH。科学家将这一材料放置在392k的环境中反应3天。由氢、氮和镥组成的三元化合物最初是一种有光泽的蓝色。这一化合物又被压缩在钻石砧槽中,在压力达到3kbar时,发生了一个惊人的变化「超导开始从蓝色变为粉红色」。最后,在约30kbar压力下又变成了亮红色,电阻降至零。Ranga Dias为这一震惊发现的材料还起了一个代号「reddmatter」。这一名称是受到了《星际迷航》中Spock创造的一种材料名字的启发。实验发现,这种材料在约21摄氏度的温度,以及1GPa的压力下失去了任何对电流的阻力,进入了超导状态。1GPa大约是大气压的10000倍(标准大气压约为101.325kPa),但是相比于室温超导体所需的数百万个大气压,这远远低于预期。那么如何证明这种三元化合物达到了超导的条件?论文中提到,评判超导材料的一个关键标准,迈斯纳效应(Meissner effect),即完全抗磁性。能够实现完全抗磁,是因为超导体表面能够产生一个无损耗的抗磁超导电流。这一电流产生的磁场,抵消了超导体内部的磁场。在量子设计物理性能测量系统(PPMS)上,利用振动样品磁强计(VSM)方法测量了不同温度下磁矩和 M-H 曲线的温度依赖性。图3a显示了在零场冷却(ZFC)和场冷却(FC)条件下,温度对直流磁化率的影响。(χ = M/H,其中M是磁化强度,H是磁场)然后通过测量磁场中冷却的迈斯纳效应,证实了超导相的存在。在大约8kbar的277K处观察到明确的迈斯纳效应的开始。M-H的曲线数据采用带VSM选项的PPMS记录。

磁化率另一个标准就是零电阻效应。是指在室温时是导体或半导体,甚至是绝缘体,可是当温度下降到某一特定值Tc时,它的直流电阻突然下降为零的这一现象。实验中,在高压下氢-氮-镥化合物的温度依赖性电阻,表明在10±0.1 kbar时超导转变高达294K,是所有实验中测得的最高转变温度。Nature称,如果氢-氮-镥三元化合物确实是实现了室温超导,那么它在实现如此高的转变温度中的作用还有待确定。需要进一步的研究来证实Ranga Dias及其团队研究的材料是一种高温超导体,然后才能了解这种状态是由振动引起的库珀对(vibration-induced Cooper pairs )驱动的,还是由一种尚未发现的非常规机制驱动的。预测新材料的机器学习算法值得注意的是,这次实验在预测新型超导材料时,还用到了机器学习算法。利用实验室中积累的超导实验数据,团队训练了一种算法,预测其他可能的超导材料。这些材料实际上是从数以千计的稀土金属、氮、氢和碳的可能组合中,混合和匹配而成的。「在日常生活中,不同的金属被用于不同的应用,因此我们也需要不同种类的超导材料,」Dias 说。「就像我们为不同的应用使用不同的金属一样,我们需要更多的环境超导体,来满足不同的应用。」

据称,算法由合著者Keith Lawlor开发,使用的是罗彻斯特大学综合研究计算中心提供的超算资源。具体来说,大概步骤是物理学家用比较容易算出来的Eliashberg谱函数来训练神经网络,训练好后,再用神经网络生成更多比较难算的三元氢化物的Eliashberg谱函数。然后就能计算出各种三元氢化物的Tc,然后只需试几种Tc最高的三元氢化物即可。有网友总结道:「现在我们知道了,今天的这个刷屏大新闻,幕后的英雄还是ML/AI。」学界表示怀疑,作者不想公开而即使这次实验,也并不严谨。据称,会议现场就有大佬提出质疑,当场和Dias对轰。有眼尖的网友指出,PPT中抠背景的做法(图左)和DC磁化率数据(图右)都疑似有问题。

来自B站网友「sddtc888」同样,Nature和Science也在新闻稿中表达了质疑。

文章地址:https://www.nature.com/articles/d41586-023-00599-9

文章地址:https://www.science.org/content/article/revolutionary-blue-crystal-resurrects-hope-room-temperature-superconductivity佛罗里达大学物理学家James Hamlin表示:「我认为他们必须把自己的工作真正地公开出来,大家才可能会相信它。」加州大学圣地亚哥分校的物理学家Jorge Hirsch更是直言:「我对此表示强烈的怀疑,因为我不相信这些作者。」然而,学界的这个愿望可要落空了——Dias不仅成立了一家初创公司Unearthly Materials,而且还申请了关于氢化镥的专利。凭借这波操作,他不仅从包括Spotify和OpenAI在内的投资者那里筹集了超过2000万美元的资金,而且还不用担心别人找会上门来要「样品」。对此,Dias表示:「我们对如何制作样品有明确、详细的说明。考虑到工艺的专有性和存在的知识产权,我们并不打算分享这种材料,当然也包括其中的方法和过程。」对人类的划时代意义

一个多世纪以来,科学家们一直在追求凝聚态物理学的突破。而超导材料凭借着两个关键特性「零电阻现象」和「迈斯纳效应」(完全抗磁性),对科技的进步有着极⼤的促进作⽤,比如:可控核聚变

托卡马克装置,是一种利用磁约束来实现受控核聚变的环形容器。其中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。而在产生强磁场的线圈上应用超导技术,则可以使磁约束位形能连续稳态运行,是公认的探索和解决未来聚变反应堆工程及物理问题的最有效的途径。电力输送

电网在传输电力时,不会像现在那样因电线中的电阻而损失高达2亿兆瓦时(MWh)的能量。据统计,用铜或铝导线输电,约有15%的电能损耗在输电线路上,光是在中国,每年的电力损失即达1000多亿度。若改为超导输电,节省的电能相当于新建数十个大型发电厂。交通运输

磁悬浮高速列车。不过这种磁悬浮技术可以不光用于交通领域,还可以用于建筑领域。也许将来人类生活在空中就不再是梦想了。医学成像

更加廉价的医疗成像和扫描技术,如核磁共振和心磁图。MRI不再需要使用大量的循环水冷却去维持其运行,故运行费用会变得更低,磁场强度却更好。电子设备

用于数字逻辑和存储设备技术的更快、更高效的电子设备。想象一下,你的电脑没有电阻,不再需要散热,电脑可以更轻薄。而且使用超导晶体管的集成电路,电脑的速度直接可以有几十几百倍的提升。用电的效率会更高,家里的用电量直线降低,灯泡却更亮了,电动车跑的更快了,电器的使用变得更加方便,更多的精细电元件可以使用到我们的生活中。



来源:phys.org量子计算

2013年,两位著名的量子计算专家,耶鲁大学教授Devoret和Schoelkopf写了一篇展望,给出了通用量子计算发展的一个路线图,而如今的超导量子计算已经处在第三到第四阶段发展的水平。

MIT的研究组显示超导量子比特退相干时间的「摩尔定律」,从最早第一个量子比特不到3纳秒,提高到了现在300微秒的水平。不到二十年的时间,提高了五个数量级,可见这个领域的发展速度之快。而且几个著名的科技公司,包括Google、IBM、Intel等,都参加到了量子计算研发的行列中来,而他们都选择的是超导的方案。如果室温超导可行的话,量子计算机上的应用,包括量子模拟、优化、采样、量子人工智能等等想必就会在不久的将来,开始改变我们的生产和生活方式。黑历史重重,前一个研究刚被撤稿

这次事件一出来,质疑的声浪就很大,这也是因为圈内人都知道,Dias可是「老」学术明星了,前科重重。在14年,他研究出来的金属氢被吹得天花乱坠,但是当人们想要查验实验成果时,Dias却声称用于保存金属氢的金刚石碎了,因而死无对证。而在室温超导领域,Dias两年前就搞出过一个大新闻。

2020年10月14日,Dias团队就在Nature上发稿并登上封面,声称一种碳、硫和氢组合成的新材料能够实现室温超导,一时引起全球轰动。
然而在论文发表后,争议不断。即使是Dias的实验室合作伙伴,都未能复现他的实验结果(做了6次均失败)。种种争议主要围绕文章中磁化率的测量数据——噪声处理后的曲线太平滑、太完美了,而Dias团队报告说,在去除噪声后测到了原始数据,但这一数据并未公布。为了回应质疑,Dias等2021年在arXiv发布了原始磁化率数据,并且对其消除噪声信号的方法给出解释。


然而批评者仍不买账,康奈尔大学的量子材料物理学家Brad Ramshaw认为,「这篇文章暴露出的新问题比它试图解决的还要多,不管是原始数据,还是得到数据的过程,都非常不透明。」加州大学圣地亚哥分校的理论物理学家Jorge Hirsch更是言辞激烈地指责Dias造假,不仅在arXiv发表抨击言论,还直接向罗彻斯特大学投诉。

作为被引用3.5万+,H-index 67的大牛,Hirsch的质疑也是有理有据的。他看到Dias论文中某些区域的数据非常不连续,而且曲线斜率和变化方向相反,这种有规律的误差并不正常。于是Hirsch对数据进行差分,相当于去除「杂质」,却得到了一条平滑、可导的曲线,这意味着T=170K是并不存在超导特征。他还指出Dias论文中的数据与之前研究存在相似性,而当年那些数据的作者已经承认了有问题。


Dias回应称Hirsch并非高压物理学家,他的批评带着强烈的偏见。事实上,Hirsch在量子多体研究方面有很大的贡献,他完善了费米子行列式的蒙特卡洛算法,且这几年一在研究各种高压超导实验和BCS理论。



Hirsch直言BCS超导理论存在「漏洞」,大量学者在该领域灌水Hirsch随后发表的几篇批评Dias的论文被删除,arXiv甚至将其禁言6个月。这是否意味着Dias的胜利呢?



Hirsch的质疑文章被Physica C删除并非如此!2022年,质疑声随着论文的撤稿达到高潮。在9月26日,Nature编辑不顾作者集体反对,强制撤下封面文章。


撤稿当天,Science新闻栏目对该事件进行了报道,称该研究「有严重问题」。

撤稿通知给出的理由回应了之前的质疑,表示Dias团队「使用了一种非标准、自定义的程序」,从两个图显示的实验数据中去除噪声,而这一方法并没有给出清楚、可靠的解释。



批评者乐得看到撤稿的结果,Hirsch甚至觉得这还不够,学术造假这个真正的问题还没有被处理。Dias团队显然并不服气,团队成员内华达大学达拉斯分校的物理学家Ashkan Salamat表示对Nature的这一决策感到困惑和失望,因为研究中电阻下降的结果并不处在争论的漩涡中心,而这恰恰是任何超导领域的发现中最重要的部分。上个月他们还在arXiv发表新文章,重新测量了受到质疑的各项数据。但这次超导现象出现的温压条件为133Gpa、260K,与之前研究中所称的267Gpa、288K并不相同。

有意思的是,本次APS March Meeting 将Jorge Hirsch与Ranga P. Dias安排在同一个会场,前后脚做报告,Hirsch缠着绷带的形象,颇有既分高下,也决生死的气势。

不过,如果实验结果为真,那就妥妥是今年最大的全球科学突破,Dias也可以提前预定诺奖了。

而人类的能源模式,也将永远改变。

1900年,英国物理学家开尔文男爵说,物理的大厦已经落成,所剩的只是一些修饰性工作。第一朵乌云是光的波动理论,第二朵乌云是能量均分的麦克斯韦-玻尔兹曼理论。还有一个说法是,谁能搞出室温超导,谁就是继牛顿和爱因斯坦之后的物理学第三人。Dias会摘下这个桂冠、解决物理学的第三朵乌云吗?让我们静观后续。







			
网编:和评

鲜花(2)

鸡蛋(6)
57 条
【手机扫描浏览分享】

扫一扫二维码[Scan QR Code]
进入内容页点击屏幕右上分享按钮
新闻速递首页 | 近期热门新闻 | 近期热评新闻 | 72小时神评妙论 | 即刻热度新闻排行
科技频道】【宠物情缘
敬请注意:新闻内容来自网络,供网友多视角阅读参考,观点不代表本网立场!若有违规侵权,请联系我们。
前期相关精彩新闻
新闻速递首页·向留园新闻区投稿·本地新闻·返回前页