回复8楼:呵呵。。。底层5毛果然不学无术。可惜勾股定理不是中国人发明的。🤣
-------------------
此定理又称毕氏定理、商高定理、毕达哥拉斯定理、新娘座椅定理或百牛定理。“毕氏”所指的是其中一个发现这个定理的古希腊数学家毕达哥拉斯,但历史学家相信这个定理早在毕达哥拉斯出生的一千年前已经在世界各地广泛应用。不过,现代西方数学界统一称呼它为“毕达哥拉斯定理”。日本除了翻译西方的“毕达哥拉斯之定理”外亦有“三平方之定理”的称呼。
早在有明文描述此定理前,古埃及在公元前1600年的纸莎草记载有(3,4,5)}这一组勾股数,而古巴比伦泥板纪录的最大的一个勾股数组是(12709,13500,18541)}。由于古代没有如此高的精确测量工具,因此一般相信得到如此巨大的勾股数必须知道勾股定理。
现在勾股定理可考的严谨数学证明,起源于略晚于毕德格拉斯的欧几里得几何原本中,卷一命题47。但奇怪的是,这个定理从未被叫做“欧几里得定理”。
《周髀算经》中,用商高与周公对谈的方式,提出 (3,4,5)}这组勾股数为例,解释了勾股定理要素[1],论证“弦长平方必定是两直角边的平方和”,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则,周髀算经没有给出证明[2]。且周髀算经成书年份不明,可能是公元前一千多年(比毕达哥拉斯早五百年),但也可能是西汉年代(比毕达格拉斯晚500年)。另外,除了周髀算经以外再无其他典籍纪载商高,无法得知是否真有商高其人,或者周髀算经作者虚构人物。